Vowel Recognition by Using the Combination of Haar Wavelet and Neural Network

نویسندگان

  • Mohammad Mehdi Hosseini
  • Abdorreza Alavi Gharahbagh
  • Sedigheh Ghofrani
چکیده

The lips movements are important in speech recognition and the Lip image segmentation has a significant role in image analysis. In this paper we present a novel technique to recognize Persian Vowels. The method is based on face detection and pupil location. First we perform the lip localization, then the color space CIE L*U*V* and CIE L*a*b* is used in order to improve the contrast between the lip and the other face regions. After that, the lip segmentation by using the Haar wavelet has done and the feature vectors has been extracted from the Haar wavelet result. Finally, the extracted feature vector has been used as neural network inputs and the vowels recognized. The proposed method has been applied on 100 tested images and the accuracy is about 79%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations

Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

A Study on CNN Based Hole-Filler Template Design using Single-Term Haar Wavelet Series

The Cellular Neural Network (CNN) is an artificial neural network of the nearest neighbour interaction type. It has been used for image processing, pattern recognition, moving object detection, signal processing, augmented reality and etc. The cellular neural network CMOS array was implemented by Anguita et al [1 – 5] and Dalla Betta et al [6]. The design of a cellular neural network template i...

متن کامل

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010